Rasyonel sayılar aşağıda gösterildiği gibi birbirlerine eklenir:
Rasyonel sayıların eşitliği [değiştir]
İki rasyonel sayının eşitliği, o sayıların pay ve paydalarının rasyonel olmasıyla anlaşılır.Bu koşul, yukarıdaki tanımdan çıkartılabilir. İki rasyonel sayı aynı denklik sınıfındaysa birbirine eşittir, Denklik bağıntısı da zaten
Rasyonel sayıları karşılaştırma (büyüklük, küçüklük) [değiştir]
Paydaları eşit olan rasyonel sayılar [değiştir]
- Paydaları eşit olan rasyonel oranlar için payı büyük olan daha büyük, payı küçük olan daha küçüktür.
-
- Örneğin
- Burada paydalar eşit ve 20'dir. Pay değerleri karşılaştırılınca soldaki pay 7 sağdaki pay 3'den daha büyük olduğu için, soldaki rasyonel oran daha büyüktür.
- Unutmamalıdır ki negatif paylar karşılaştırılırken sadece mutlak değerlerin karşılaştırılması hatalı olup negatif işaretlerinin de ele alınması ve :negatif sayılı pay değerlerde mutlak değeri büyük görünen sayının daha küçük olduğu hatırlanmalıdır:
- Payda 20'ye eşit olup sağdaki negatif pay değeri -3, soldaki negatif pay değeri olan -7'den daha büyük olduğu için sağdaki oran daha büyüktür.
Payları eşit olan rasyonel sayılar [değiştir]
- Payı eşit olan rasyonel sayılar için ise paydaları eşit olanın tam tersi bir kural uygulanır:
- Paylar eşit olduğunda bölünen parça sayısı yani payda büyüdükçe oluşan parça boyutları daha küçük olacaktır.
Ne payları ne de paydaları eşit olan rasyonel sayılar [değiştir]
- Bu şekildeki durumlarda karşılaştırmadan evvel paydaların eşitlenmesi veya içler dışlar çarpımı yapılmasını gerektirir.
-
- Paydaların eşitlenmesi
- Her iki rasyonel sayının da birbirlerinin paydalarıyla genişletilmesini gerektirir.
- Paydaların eşitlenmesi
-
-
- Yukarıda görüldüğü gibi genişletme işleminden sonra oluşan paydaların ikisi de 10.4 yani 40'dır. Yukarıda görüldüğü gibi karşılaştırılabilir.
-
-
- İçler dışlar çarpımı
- Birinci rasyonel sayının payının ikincinin paydasına, ikincinin paydasının ise birincinin payıyla çarpılmasıdır:
- İçler dışlar çarpımı
Hiç yorum yok:
Yorum Gönder