4 Temmuz 2012 Çarşamba

TAM SAYILAR

İşlem Önceliği [değiştir]
Çarpma ve bölme, toplama ve çıkarmadan önce yapılır. Parantez varsada önce parantez içindeki işlem yapılır. Eğer parantez yoksa başta olan bölme ya da çarpma yapılır
  • a:b.c=a/b.c
  • a.c:b=a.c/b

Toplama [değiştir]

Tam sayılarda toplama yapılırken sayılar pozitifse toplanır sonuca yazılır. İkiside negatifse toplama yapılır fakat sonuç negatif olur. Zıtsa birbirinden çıkarılır. Büyüğün işareti verilir.
Toplamanın tıpkı doğal sayılarda olduğu gibi kalması, daha doğrusu bu toplamanın doğal sayılardaki toplamanın bir genişlemesi olması gerekir. Bu nedenle tamsayılar aşağıdaki belitleri sağlamalıdır. Herhangi a,b,c tamsayıları için
  1. a+0=a (birim öğe)
  2. a+b=b+a (değişme)
  3. a+(b+c)=(a+b)+c (birleşme)
  4. a+(-a)=0 (tersinir öğe)
Buradaki son madde doğal sayılarda olmayan bir özelliktir ve bu özellik tamsayılar kümesini öbek (grup) yapar.

Çıkarma [değiştir]

Çıkarma işlemi geriye doğru sayma işlemidir. Tam sayılarla iki sayının farkı;eksilen sayı ile çıkan sayının toplama işlemine göre tersinin toplamı ile aynıdır.Çıkarma işlemi bu duzeneğin en önemlisidir . Bunu hiç unutmamak gerekir .
(+9)-(+3)=(+9)+(-3)= (+6), (-7)-(-8)=(-7)+(+8)=(+1)
Örnek:
(-12)+(-4)-(-8)+(+5)+(-1)
=(-12)+(-4)+(+8)+(+5)+(-1)
=(-17)+(+13)
=(-5)

Çarpma [değiştir]

Tam sayılarda çarpma işlemi yapılırken aynı işaretlilerin çarpımı pozitif farklı işaretlilerin çarpımı ise negatifdir. Bölme işlemindede aynı çarpma kuralı uygulanır ve sayı aynı doğal sayılarda olduğu gibi bölünür. Aynı işaretli iki tam sayı birbirine bölündüğünde sonuç pozitif, zıt işaretli iki tam sayı birbirine bölündüğünde ise sonuç negatiftir. Tam sayıların sıfıra bölümü tanımsızdır. Sıfırın tam sayılara bölümünde elde edilen sonuç ise sıfırdır.
Tam sayılarda çarpma işlemi doğal sayılardaki çarpmayla aynı özellikleri gösterir. Çarpma işlemi, "\cdot" imiyle gösterilir, ancak a \cdot b yazmak yerine doğrudan ab yazmak gelenektendir. Bu maddede de öyle yapacağız.
Herhangi a, b, c tamsayıları için,
  1. a1=a (birim öğe)
  2. ab=ba (değişme)
  3. a(bc)=(ab)c (birleşme)
özellikleri sağlanır. Tamsayılarda çarpmaya göre ters öğe yoktur.
Ayrıca toplama ile çarpmanın birbirleriyle olan ilişkisini gösteren dağılma özelliği de vardır:
  • a(b+c)=ab+ac (çarpmanın toplama üzerine dağılma ya da kısaca soldan dağılma özelliği)
  • (a+b)c=ac+bc (toplamanın çarpma üzerine dağılma ya da kısaca sağdan dağılma özelliği)
Toplamayla birlikte bu iki işlem tamsayıları değişmeli halka yapar.

Bölme [değiştir]

Bölme özünde çarpmanın tersidir. Tamsayılarda bölme, her sayı için tanımlanmamıştır. Bu yüzden bölüm her zaman tamsayılar kümesinin bir öğesi olmayabilir.
Örnek: (+15):(-3)=(-5)

Hiç yorum yok: